A subset A of \mathbb{R}^n has (n-dimensional) measure 0 if for every $\varepsilon > 0$ there is a cover $\{U_1, U_2, U_3, \ldots\}$ of A by closed rectangles such that $\sum_{i=1}^{\infty} v(U_i) < \varepsilon$. It is obvious (but never-vertex)

A subset A of \mathbb{R}^n has (n-dimensional) content 0 if for every $\varepsilon > 0$ there is a finite cover $\{U_1, \ldots, U_n\}$ of A by closed or open rectangles such that $\sum_{i=1}^n v(U_i) < \varepsilon$. If A has content 0,

Q: What if replace "rectangles" by "bulls"? A: 0

Thm A compact, then A has content 0 => A has measure 0

Recall A is compat => V open carer {Ui}icI, I a finite subcover

"=>": Clearly, even if A is not compact.

"=" $\forall e > 0$, \exists an open rect cover $\{u_1, u_2 \dots\}$ st $\overset{\varnothing}{\underset{i = 1}{\mathbb{Z}}} v(u_i) < e$.

A is $cpt \Rightarrow \exists a \text{ subcover } \{u_j, u_{j_2} \dots u_{j_n}\} \text{ of } A$

Clearly, $\sum_{k=1}^{n} v(U_{j_k}) \leq \sum_{i=1}^{\infty} v(U_i)$

EX R < R² hus measure o but doesn't have content o

content: unbounded subsets don't have content o.

measure: We show both Rzo and Reo have measure 0. Thus $R = R_{20}UR_{E0}$ have measure 0.

Ve>0, Let EU, Uning be the closed cover of Rzo as shown:

"Philosophy": Let n < m "n-dimessional subsets" in Rm have measure o

1. Let f be a bounded integrable function on R. Prove that for any $\epsilon > 0$, there exists some $\delta > 0$ such that whenever \mathcal{P} is a partition of R with $\operatorname{diam}(Q) < \delta$ for all $Q \in \mathcal{P}$, we have $U(f,\mathcal{P}) - L(f,\mathcal{P}) < \epsilon$.

Hint: Let $R = [a_1, b_1] \times \cdots [a_n, b_n]$ and $w = \max_i |b_i - a_i|$. For any partition \mathcal{P} with $diam(Q) < \delta$ for all $Q \in \mathcal{P}$, if we take a refinement \mathcal{P}' of \mathcal{P} by adding one more grid point to $[a_i, b_i]$ for some i, then we have $L(f, \mathcal{P}') \leq L(f, \mathcal{P}) + 2M\delta w^{n-1}$ where M > 0 is a global bound for |f|.

Solution. Let $\varepsilon > 0$. By Riemann condition, there exists a partition $\tilde{\mathcal{P}}$ of R such that $U(f, \tilde{\mathcal{P}}) - L(f, \tilde{\mathcal{P}}) < \varepsilon/2$. Let \mathcal{P} be a partition of R with $\max_{Q \in \mathcal{P}} (\operatorname{diam}(Q)) < \delta$. Following the hint, if \mathcal{P}' is a common refinement of \mathcal{P} and $\tilde{\mathcal{P}}$ obtained by adding the grid points of $\tilde{\mathcal{P}}$ to \mathcal{P} , then

$$L(f, \mathcal{P}') \le L(f, \mathcal{P}) + 2CM\delta w^{n-1},$$

and similarly

$$U(f, \mathcal{P}') \ge U(f, \mathcal{P}) - 2CM\delta w^{n-1}$$

where C is a constant that depends only on $\tilde{\mathcal{P}}$. Thus,

$$U(f, \mathcal{P}) - L(f, \mathcal{P}) \le \varepsilon/2 + 4CM\delta w^{n-1}.$$

The proof is complete by choosing a sufficiently small $\delta > 0$.

2. Let f be a bounded integrable function on R. Prove that for any $\epsilon > 0$, there exists some $\delta > 0$ such that whenever \mathcal{P} is a partition of R with $\operatorname{diam}(Q) < \delta$ for all $Q \in \mathcal{P}$, and $x_Q \in Q$ is any arbitrarily chosen point inside $Q \in \mathcal{P}$, we have

$$\left| \sum_{Q \in \mathcal{P}} f(x_Q) \operatorname{Vol}(Q) - \int_R f \ dV \right| < \epsilon.$$

(The sum in the above expression is what we usually call the "Riemann sum"!)

Solution. It suffices to note that given a partition \mathcal{P} and arbitrarily chosen points $x_Q \in Q$ for each $Q \in \mathcal{P}$, we have

$$L(f, \mathcal{P}) \le \sum_{Q \in \mathcal{P}} f(x_Q) \text{Vol}(Q) \le U(f, \mathcal{P}),$$

and

$$L(f, \mathcal{P}) \le \int_{\mathcal{R}} f \, dV \le U(f, \mathcal{P}).$$